Edinstvo.org
ЛЮБИТЕЛЬСКАЯ АСТРОНОМИЯ

Оптимальное ISO для астрофото

Астрофотография

Среди астрономов-любителей распространенна масса мифов вокруг ISO. Главная проблема в том, что они именно мифы, не имеющие под собой реального обоснования. Для того, чтобы получать качественные автрофотографии, следует досконально разобраться с этим вопросом.

Миф: ISO влияет на светочувствительность матрицы

Эквивалентная схема ячейки КМОП-матрицы По своей природе КМОП-матрица (а это все современные цифровые фотоаппараты с технологией Active Pixel Sensors (APS) — активно-пиксельные датчики), основана на работе обычного фотодиода (1). Световой поток, попав на полупроводник вызывает в нём движение электронов, то есть создает электрический ток. Чем больше световой поток, тем больше электронов. Эти электроны накапливаются на конденсаторе (3): чем длинее выдержка, тем больше на нём воникнет разность потенциалов.

После того, как экспозиция закончилась, напряжение с конденсатора снимается отдельным транзистором, который называется усилителем (4) и передается в АЦП по шинам (5) и (6). Транзистор (7) служит для сброса, а транзистор (2) выполняет роль затвора.

Ссылки для подробного изучения вопроса: КМОП-матрица, Светочувствительность цифровых камер, Фотодиод.

В этой схеме есть только один светочувствительный элемент — фотодиод. И его светочувствительность зависит в первую очередь от физических характеристик полупроводника (чем больше его площадь, тем больше чувствительность), а также от спектра светового потока. Светочувствительность измеряется в вольтах — это напряжение (или амперах, если это ток), которое создаёт фотодиод.

Таким образом, изменяя ISO, мы никак не меняем светочувствительности. Возможно изменяются какие-то другие параметры, но точно не светочувствительность.

Чтобы доказать этот факт, проведём небольшой эксперимент. Сделаем снимок одного и того же объекта, на одном и том же оборудовании, в одно и тоже наблюдательное время, с одной и той же экспозицией, но с разными ISO. Если ISO влияет на светочувствительность матрицы, то звёзд на фотографиях с высоким ISO будет больше. Иначе — будет одинаково и мы не увидим разницы по предельной звездной величине.

Исходные RAW-снимки были обработаны в астропроцессоре Fitswork: выполнена стандартная дебайеризация «Bayer Pattern, V.N.G. Color Correction», после этого выставлены автоуровни по гистограмме (Automatic Scaling). Больше никаких операций с файлами не производилось.

Посмотрим на снимки M35. Один — это ISO 800, второй — 1600. Предельная звёздная величина на обоих снимках около 16m.

Рассеянное звездное скопление M35

А вот вариант M42 (Туманность Ориона) с ISO 100 и 2000, где можно рассмотреть плавные переходы с туманности на фон неба.

Туманность Ориона

Опять же, никакой принципиальной разности мы не видим, хотя здесь ISO различается в 20 раз! Из чего можно сделать вывод в правильности теоретических предположений: ISO не имеет отношения к светочувствительности матрицы.

Однако стоит отметить, что сигнал с APS-матрицы может проходить через аналоговый усилитель (Analog Processing), усиливая полученный с матрицы электрический сигнал. Лишь только после усиления сигнал считывается АЦП. Коэффициент аналогового усиления может меняться в том числе от используемого ISO. Данная возможность применяется для традиционной фотографии в условиях плохого освещения. В этом случае фотоаппарат, чтобы хоть как-то «раскачать» слабый сигнал, усиливает его до нормального входного напряжения АЦП. При этом следует учитывать, что усилению подлежит как полезный сигнал, так и все сопутствующие шумы матрицы.

Светочувствительность при этом не меняется. Меняется лишь уровень (фактически яркость) снимка. Причём для ярких областей возникнет «пересвет» (клиппинг), что полностью делает такие снимки непригодными.

Мы можем провести похожий эксперимент, но на высоких ISO (1600 и выше).

Туманность Ориона

Обратите внимание, как сильно оказался пересвечен центр Туманности. Его уже невозможно разделить на отдельные звезды, как на других снимках и невозможно исправить искажения постобработкой. Для астрофотографов это означает невозможность использования высоких значений ISO.

В разных моделях фотоаппаратов предельно допустимое ISO будет различаться. С практической же точки зрения, лучшим ISO для астрофото будет небольшим: 100, 200, 400 — то есть те, где снимки невозможно различить между собой и при этом не возникает клиппинга.

Динамический диапазон матрицы и ISO

Динамический диапазон (ДД) или фотографическая широта — способность правильно передавать соотношение яркостей снимаемого объекта. То есть на одном снимке должны хорошо получиться и объекты в тенях, и яркие. Нижняя граница ДД определяется шумами матрицы — здесь уже невозможно определить где полезный сигнал, а где шум.

Ссылки для подробного изучения вопроса: фотографическая широта, High Dynamic Range Imaging

Верхняя граница зависит от ряда факторов.

В первую очередь — это физические характеристики фотодиодов матрицы. Большой размер позволяет «накапливать» больше электронов (от светового потока), а значит иметь больше «градаций» яркости (до физического предела в 14 стопов).

Фотографическая широта матрицыВторой фактор — это способность оцифровать полученный сигнал и он напрямую зависит от разрядности АЦП фотоаппарата. Современные камеры 14-битные: это диапазон чисел от 0 до 16384. При этом следует отметить, что разрядность АЦП не влияет на ДД фотодиодов, а относится прежде всего к точности измерения полученного сигнала.

Когда фотодиод достигает насыщения, АЦП отмечает этот пиксель максимальным значением. Здесь уже потеряна цветовая составляющая, поскольку максимум достигнут во всех RGB-каналах (после дебайеризации). Получился белый цвет. На фотоснимках все «пережённые» звёзды белые.

Из всего это следует, что динамический диапазон матрицы никак не связан с изменением ISO. На одном снимке можно получить ровно то, на что способна данная матрица — и самые слабые звёзды, и самые яркие. Если стоит задача получить непересвеченные звёзды, следует изменить время экспозиции. Определить конкретное значение можно только сделав пробные кадры, по которым проверить «пересвет».

Изменяя ISO может меняться и коэфициент аналогового усиления (в десятки раз, а также дробные). Это означает, что ДД (в результате в RAW-файле) при этом сужается и «смещается» в область более светлых тонов. Очевидно, что «пересвет» как раз и означает слишком большое усиление для данного снимка. Проблема заключается в том, что АЦП всё также распределяет сигнал в пределах своего диапазона, что приводит к нарушению реально полученного сигнала. Покажу это на небольшом искусственном примере.

Пусть на матрице (непосредственно на выходе ASP-сенсора/до дополнительного усиления) получены пиксели со значением 10 (шум), 20, 50. Максимальное значение на АЦП пусть будет 100. При коэффиценте усиления (КУ) равной единице мы получим те же самые значение пикселей. При КУ=2 это уже 20, 40 и 100. При КУ=5 будет 50, 100, 100. Таким образом, усиление приводит к сужению ДД. В первом варианте это 10..100, а в последнем 50..100. Но АЦП распределит все эти значения на весь свой диапазон 0..100. То есть в RAW-файле мы увидим все возможные значения чисел АЦП: с нуля до максимального пикселя.

Сложность ещё в том, что дополнительный усилитель нелинеен, то есть он может больше усиливать слабые сигналы и меньше сильные, или наоборот, или даже использовать специальную таблицу усилений. Тут остаётся только гадать (и продолжать исследовать свой фотоаппарат).

На сайте sensorgen.info можно найти свою модель фотокамеры, где приведены некоторые характеристики. Параметры Saturation (e-) и DR (stops) указывают на динамический диапазон матрицы. Первый параметр указывает количество электронов, после которых происходит насыщение матрицы (верхний предел), а второй — относительный показатель по стопам, более привычным для фотографов. Наверное для всех фотоаппаратов максимальное значение Saturation будет на минимальном ISO, а это означает, что именно в этом случае КУ равен или близок к 1, и именно в этом случае сигнал с матрицы сохраняется в RAW-файле с минимальными искажениями.

Для астрофотографии минимальное ISO будет обладать самым большим ДД с минимальными искажениями. Потерь светочувствительности при этом нет, а низкую яркость изображения легко можно откорректировать гамма-коррекцией при постобработке.

Следует затронуть ситуацию, когда снимаемый объект настолько слабый, например галактика, что на изображении пиксели не достигают максимально возможного значения. Динамический диапазон данной сцены будет небольшим, а значит позволяет применить аналоговое усиление фотоаппарата путём увеличения ISO. Точное значение будет зависеть сразу от ряда факторов, в первую очередь — это время экспозиции и яркость объекта. Необходимо сделать несколько тестовых raw-снимков и по ним определить достигнут ли максимум. Если достигнут, то ISO следует уменьшать.

Можно провести серию тестов с разной выдержкой и ISO по разным небесным объектам. По ним определить максимальное ISO для разной звёздной величины при заданной выдержке. Например для M42 максимальное ISO 100, поскольку при выдержке 8 секунд уже возникает «пересвет». Для M1 при выдержке 10 секунд, максимальное ISO 400. Если выше, то звёзды в кадре «выгорают». (Данные для фотоаппатата Nikon D5100.)

В любом случае следует понимать, что аналоговое усиление примерно тоже самое, что и гамма-коррекция. Можно доверить часть операций фотоаппарату, а можно всё сделать самостоятельно при обработке снимков.

Шумы матрицы, шумы изображения и ISO

Сам по себе шум матрицы обусловлен полупроводниковой природой её элементов. Если речь идёт о темновом токе, то он сильно зависит от температуры и времени экспозиции. При более высокой температуре (и выдержке), будет и больше шума.

Ссылки для подробного изучения вопроса: Цифровой шум изображения, Фильтр Байера, Отношение сигнал/шум.

Такой шум имеет хаотичную структуру, но из-за особенностей производства матриц, может иметь и некую постоянную составляющую, проявляющуюся в виде «горячих» и «холодных» пикселей или в виде «полосности» на фотоснимках в одних и тех же местах.

Сам по себе шум неизбежен, поэтому говорят об отношении сигнал-шум (signal-to-noise ratio, SNR).

В астрофотографии принято делать т.н. dark-файлы. Это фотоснимки с закрытой крышкой в полной темноте при той же температуре и с той же экспозицией, что и при сьёмке объекта. По темновому кадру можно получить статистику (в Fitswork'е), которая будет указывать на разброс значений пикселей. Пример по Nikon D5100 с серией dark-файлов:

ISO	  Std.Dev	Mean
 
100		1		1
400		3		2
800		6		4
1600	12		8
3200	26		16
6400	50		32
 
Температура +18С
Std.Deviation — стандартное квадратичное отклонение (уровень шума)
Mean — среднее арифметическое по всем пикселям

Значение Mean хорошо показывает «яркость» шума. Поскольку максимальное значение может быть 16383, то виден крайне низкий уровень темнового шума. Это подтверждается и данными с сайта sensorgen.info по параметру Read Noise в сравнении с Saturation.

Для того, чтобы ценить уровень шума на изображении, dark-файла уже недостаточно. Лучше всего сделать реальный снимок и уже по нему снимать статистику. В первую очередь следует найти область кадра, где нет звёзд. Значение Mean, Min и Max покажут разброс значений пикселей, а также их средний уровень. Нюанс в том, что здесь могут присутствовать «горячие» и «холодные» пиксели, поэтому нужно смотреть среднее значение (или Std.Deviation).

Этот показатель следует сравнить с dark'ом — темновой шум. Если небо очень тёмное, то эти показатели будут примерно равны. Если же фон неба выше, то это говорит о том, что атмосфера не позволяет достичь предельных возможностей матрицы, а SNR изображения будет напрямую зависеть от состояния атмосферы.

Снимки в темную ночь и при полной Луне

Первый снимок был получен при почти полной Луне, второй — в тёмную ночь. В обоих случаях использовалась одна выдержка, одно ISO и одно оборудование. На этом ISO в dark'е было получено значение Std.Deviation = 3, что говорит о том, что небо хоть и тёмное (второй снимок Std.Deviation = 12), но предел матрицы так и не достигнут. На первом же снимке разница более разительна Std.Deviation = 125 говорит об очень плохой атмосфере.

Очень часто шум изображения путают с шумом матрицы. Шум матрицы — это «электрические» шумы сенсора + шум усилителя + шумы АЦП. Этот шум доступен в RAW-файле в виде dark'ов, где можно его оценить. После того, как raw-файл прошёл любую обработку, включая и дебайеризацию, данные уже были искажены и больше не соответствуют уровню шума матрицы. Это очень легко проверить, если взять один raw-файл и выполнить дебайеризацию разными методами, например: билинейная, Bayer Pattern, V.N.G. Color Correction, Bayer, modified Kimmel и Bayer, Astro. Во всех случаях SNR полученных изображений будут разными.

Поэтому, единственным верным способом оценить SNR полученного снимка — это анализ RAW-файла. Любая последующая обработка приводит к существенному искажению реальной статистики.

И совсем уж большой ошибкой будет оценка уровня шума после сложения кадров. Сложение — это специальный процес, при котором происходят (математические) манипуляции с пикселями и результат сложения — это совершенно новое изображение, которое и следует рассматривать без учета его исходных кадров.

С практической точки зрения математически оценивать SNR на этапе постобработки — абсурд, поскольку художественная астрофотография (то, чем и занимаются астрономы-любители), подразумевает и художественное оформление снимков, например выравнивание фона, усиление цвета, применение шумоподавления и т.п. То есть всё то, что делает снимок визуально красивым, но при этом лишённым какой-либо научной ценности. Математическая статистика здесь уже не имеет смысла.

ISO и разрешающая способность

Другой момент, связанный ISO, заключается в том факте, что при увеличении ISO происходит увеличение размера звёзд. Здесь работают несколько факторов. Первый — атмосфера, которая немного «болтает» звезду в хаотичном направлении из-за турбулентности. Из-за этого мы и видим звёзды мерцающими. Второй фактор — это дифракция, которая проявляется в виде т.н. диска Эйри. Все это не позволяет получить на изображении звёзды диаметром менее 1" (для любительских телескопов). (Еще один фактор — это физический размер пикселя матрицы, определяющий масштаб изображения, например 1 пиксель соответствует 1.2". Это зависит от модели фотоаппарата и фокусного расстояния телескопа.) Из-за этого вокруг звезд образуется гало — цветовая окантовка. Её яркость плавно переходит от яркой звезды к темному фону неба.

Ссылки для подробного изучения вопроса: Диск Эйри, Пятно рассеяния, Оптическая турбулентность, Когерентность света.

При увеличении ISO происходит усиление и окантовки, что приводит к увеличению диаметра диска звезды на изображении.

В свою очередь это уменьшает требования к точности гидирования, поскольку небольшой «смаз гидирования» просто не будет заметен из-за «распухших» звёзд. Если гидирование хорошее (или нужно его проверить), то ISO следует уменьшить, чтобы исключить чрезмерное усиление окантовки (фактически — размер) звёздных треков.

Из этого также следует вывод, что для максимального разрешения близких звёзд (это касается и сьёмки шаровых скоплений) следует использовать только самое низкое ISO. Для эксперимента можно снять несколько тесных двойных пар на разном ISO. Отличный кандидат для этого — Мицар (Мицар A и Мицар B). Расстояние между звёздами около 15". Видно, что при увеличении ISO звёзды сливаются. (Масштаб на всех снимках 280%. Это необработанные RAW-снимки.)

Мицар с разным ISO

Unity ISO

Термин «Unity ISO» вызывает много споров в среде астрономов-любителей. Считается, что это т.н. «нативное ISO» по аналогии с CCD-матрицами и параметром gain. Главная проблема в том, что никто из производителей КМОП-матриц не подтверждает его существования, более того, ISO вообще выдуманный только для удобства в классической пленочной фотографии (где ISO реально существует).

Поэтому «Unity ISO» принято определять путем изучения уровня шумов матрицы и реального изображения. В какой-то момент увеличение ISO не приводит к уменьшению шума, а только снижается динамический диапазон. Построив график можно определить этот перелом. Именно это и есть «Unity ISO» для данного фотоаппарата.

Небольшое повышение ISO позволяет скрыть и «полосность» шума матрицы на light-снимках. Если небо тёмное, то возможна ситауция, когда шум матрицы окажется выше фона неба и структура dark-файла проявится на изображении. Более подробно этот вопрос я изучаю в статье «Dark-файлы и Unity ISO»

Определение оптимального ISO для дипскай-съёмки

Для того, чтобы точно определить оптимальное ISO, следует как минимум провести ряд тестов. Фотокамеры разные, поэтому не существует какого-то единого универсального значения.

В первую очередь следует сделать серию тестов по определению предельной звёздной величины. Лучше это делать по неплотным рассеянным звездным скоплениям, например M35. Следует сделать кадры с абсолютно теми же параметрами, только меняется ISO от минимального до максимального. После обработки в Fitsworke (дебайеризация и автоуровни, чтобы выровнять яркость изображение), можно визуально определить снимки с самыми слабыми звёздами. Скорее всего результат будет аналогичен приведённому мной, но лучше это проверить (в теории аналоговый усилитель может ослаблять сигнал). Этим тестом определяется минимальное ISO.

Следующий тест по яркому объекту, например M42. По нему будет хорошо виден «пересвет». Здесь определяется максимальное ISO, при котором нет «выженных» звёзд.

Съёмка dark'ов позволит выяснить значение SNR матрицы. Как правило он не будет сильно меняться от времени, но будет зависеть от температуры. Можно сделать несколько снимков при разной температуре, чтобы иметь готовые табличные данные.

Предельные возможности матрицы определяются по реальному объекту, чтобы снять статистику по участку неба без звёзд. От этого также делается вывод о качестве атмосферы. Если она плохая, то хорошего результата будет добиться сложно.

Если на изображении проявляется структурный шум матрицы, то можно сделать тестовые снимки на минимальных ISO (100...400) и попробовать определить «Unity ISO», при котором «полосность» становится незаметной. Или можно воспользоваться сервисом DxOMark Derived Sensor Characteristics, где найти модель фотоаппарата и узнать нужную характеристику.

Увеличение выдержки позволяет зарегистрировать более слабые звёзды, но существует предел светочувствительности матрицы, за который невозможно выбраться даже многократно увеличив выдержку. Тест в этом случае будет такой. Делается серия снимков с разной выдержкой (5, 15, 30, 45, 60 сек. и т.д.). После обработки по звездной карте проверяется звездная величина самых слабых звёзд. Например для D5100 (через телескоп 150/750) при выдержке 15 секунд регистируется примерно 16.0m, а при выдержке 30 и 60 секунд — 16.35m. Это говорит о том, что фактически это предел для данного фотоаппарата и данного темного неба. Единственным способом увеличить проницание — увеличение диаметра объектива телескопа. Данный тест позволяет определить минимально достаточную выдержку для самых слабых объектов для данного телескопа и монтировки (от этого зависит время и точность ведения без ошибок).

Для того, чтобы получить хорошее итоговое изображение, следует использовать сложение снимков. Сам процесс сложения и его тонкости заслуживают отдельной статьи, но здесь необходимо упомянуть тот факт, что при сложении снимков значительно улучшается уровень шумов. Даже всего два-три сложенных снимка по своим показателям и качеству будут значительно лучше, чем одиночный кадр.

Плюсы и минусы минимального/оптимального ISO

Преимущества

  • Низкий уровень шумов.
  • Максимально возможный динамический диапазон, позволяющий получить меньше «пересвеченных» звёзд и больше цветных.
  • Максимальная разрешающая способность без «распухших» звёзд.

Недостатки

Неудобно просматривать готовые фото на экране фотоаппарата. Яркость изображений будет низкая и будет казаться, что на фото нет слабых объектов. Поэтому перед тем, как приступить непосредственно к съёмке, можно сделать несколько тестовых снимков с высоким ISO (например 1600), по которым проверить точность гидирования, фокуса, полярки и т.п. После этого переключить ISO на рабочее минимальное.

Счетчики